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Abstract
In the work presented below the classical subject of orthogonal polynomials on
the real line is discussed in the matrix setting. An analogue of the determinant
definition of orthogonal polynomials is presented; the classical properties such
as the recurrence relation, the kernel polynomials, and the Christoffel–Darboux
formula are discussed. A τ -function for the system of matrix-valued orthogonal
polynomials on the real line is presented. Some properties of the τ -functions
are investigated.

PACS numbers: 02.30.Gp, 02.30.Tb

1. Introduction

Since the fundamental works of Akhiezer [1], Szegö [31], and many others, orthogonal
polynomials have been a major tool in the analysis of many problems in mathematics, such
as the rational and polynomial approximation and interpolation, the moment problem, and
numerical quadrature. The development of special and important examples goes much further
back, see for instance Lebedev [24]. Matrix-valued orthogonal polynomials supported on the
real line are used extensively in the areas of rational approximations and in system theory, see
[14]; in the Lanczos method for block matrices, see [17, 19]; in the spectral theory of the doubly
infinite Jacobi matrices, see [3, 29] as well as [30]; in the analysis of sequences of polynomials
satisfying higher order recurrence relations, see [6, 10] and more. Applications of matrix
valued orthogonal polynomials supported on the unit circle include linear estimation theory,
where finite block Toeplitz matrices need to be inverted, see [27]; the analysis of sequences
of polynomials orthogonal with respect to scalar measure supported on equipotential curves
in the complex plane, see [25]; frequency estimation in time series analysis and many more.
Zeros of orthogonal polynomials are used in the areas of spectral analysis, digital filter design,
quadrature formulae, etc. In the matrix setting, the zeros of orthogonal polynomials arise as
nodes in quadrature formulae and as eigenvalues of block Jacobi matrices.
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Starting with the work of Krein [22, 23] as well as [2, 5–10, 13, 16, 26, 30] there is
a general theory of matrix-valued orthogonal polynomials. Some very important results of
the theory of scalar-valued orthogonal polynomials, such as Favard’s theorem and Markov’s
theorem have been extended to the matrix-valued case, see [5–7, 10, 12], and many more still
need to be investigated in the new context of the matrix-valued orthogonal polynomials.

This paper is organized as follows. In section 2, notations are introduced and the matrix
analogue of the determinant formula for the polynomials of the first kind on the real line
is presented. Section 3 concerns orthogonality of the polynomials introduced in section 2.
In section 4, the Gramm–Schmidt orthogonalization procedure is discussed in the matrix
setting. The recurrence relation in the matrix case is presented in section 5. Section 6
concerns the matrix-valued version of the kernel polynomials and the Christoffel–Darboux
formula. In section 7 a τ -function for the system of matrix-valued polynomials on the real
line is introduced. Expressions connecting polynomials of the first and second kinds with the
τ -function are presented and compared to these in the scalar case.

2. Definitions

In this section we introduce the notations and present a definition of the scalar/matrix-valued
orthogonal polynomials on the real line which is a natural extension of the classical determinant
definition discussed in numerous books and articles, for example, see [4].

Given a measure µ(dx) = W(x) dx with symmetric weight function W(x) ∈ Rk×k for
k � 1 and supported on the real line x ∈ R, introduce

• The nth moment of the measure µ(dx)µn ∈ Rk×k , where

µn =
∫

xnµ(dx) =
∫

xnW(x) dx, n = 0, 1, . . . .

Note that µn = µ∗
n. In this text ‘*’ denotes transposition.

• The matrix Tn for n � 1, where I is k × k identity matrix

Tn =




µ0 µ1 . . . µn−1 µn

µ1 µ2 . . . µn µn+1

...
...

...
...

...

µn−1 µn . . . µ2n−2 µ2n−1

I xI . . . xn−1I xnI


 ∈ Rk(n+1)×k(n+1).

• A Hankel matrix Hn for n � 1

Hn =




µ0 µ1 . . . µn−1

µ1 µ2 . . . µn

...
...

...
...

µn−1 µn . . . µ2n−2


 ∈ Rkn×kn.

• The matrix H which is the semi-infinite version of Hn for n → ∞.
• The vector vn,2n−1 for n � 1

vn,2n−1 = (µn µn+1 . . . µ2n−1)
∗ .

Introduce a shift operator v
(m)
n,2n−1 ≡ vn+m,2n−1+m. In section 6 this ‘shift’ notation will be

interpreted as a certain mth derivative.
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• In the matrix

Hn+1 =
(

Hn vn,2n−1

v∗
n,2n−1 µ2n

)

denote the Schur complement of µ2n

Sn = µ2n − v∗
n,2n−1H

−1
n vn,2n−1, with S0 = µ0. (1)

Introduce the diagonal matrix

S = diag[S0, S1, . . .]. (2)

Using the notations above we introduce the following definition:

Definition 1 (Monic matrix-valued polynomials on the real line). Define a family of
polynomials {Pn(x)}∞n=0 as the Schur complement of xnI in the matrix Tn, i.e.

Pn(x) = xnI − [I xI . . . xn−1I ]




µ0 µ1 . . . µn−1

µ1 µ2 . . . µn

...
...

...
...

µn−1 µn . . . µ2n−2




−1 


µn

µn+1

...

µ2n−1


 , (3)

with P0(x) = I . Denote by P the row vector of matrix-valued polynomials

P = [P0(x), P1(x), . . .]. (4)

Note 1. In the classical theory of scalar-valued orthogonal polynomials, monic polynomials
are defined as (for example, see [1])

pn(x) = det(Tn)

det(Hn)
, with p0(x) = 1,

which is exactly what we obtain using definition (3) in the scalar case. This is because
for any matrix with partitioning M = (

A

C

B

D

)
its determinant can be computed as det(M) =

det(A) det(D − CA−1B), hence det(Tn) = det(Hn) det(Pn(x)) = det(Hn)Pn(x), where Pn is
the one defined in (3).

Note 2. In definition (3) it is assumed that matrices Hn are invertible for all n � 1, which is
a restriction on the measure µ(dx). In particular, all matrices Hn being invertible implies that
the matrices Sn are invertible, since det(Hn+1) = det(Hn) det(Sn).

Definition 2 (matrix-valued polynomials of the second kind). Define a family of matrix-
valued polynomials {Qn(x)}∞n=0 as

Qn(x) = x

∫
µ(dz)

Pn(z)

x − z
, (5)

where the polynomials Pn(x) are defined in (3). The polynomials Qn(x) are called polynomials
of the second kind.

Note 3. In the classical theory of scalar-valued orthogonal polynomials, the polynomials of
the second kind are defined in the same way as in (5), see [28].

In what follows our matrix indexing starts from zero, i.e. Mi,j refers to {i, j}th k × k block of
matrix M, where i, j � 0.
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3. Orthogonality via the moments of the measure

The following proposition shows that a family of monic polynomials {Pn(x)}∞n=0 defined in
(3) forms a set of orthogonal polynomials for any symmetric measure µ(dx) = W(x) dx.

Proposition 1. Let {Pn(x)}∞n=0 be a family of polynomials defined in (3) and Sn be defined in
(1). Define an inner product on L2(Rk) by means of

〈P,Q〉 =
∫

P ∗(x)W(x)Q(x) dx, (6)

then

〈Pi, Pj 〉 = δijSi,

for any i, j � 0.

Proof. Observe first that for any 0 � m � n − 1

vm,m+n−1H
−1
n = [µm µm+1 µm+2 . . . µm+n−1]H−1

n = [0 . . . I . . . 0],

where I is at the mth location. Hence,

vm,m+n−1H
−1
n vn,2n−1 = µm+n. (7)

It is enough to show that Pn(x) is orthogonal to all xmI for 0 � m � n − 1, i.e.∫
xmW(x)Pn(x) dx =

∫
xmW(x)

(
xnI − [I xI . . . xn−1I ]H−1

n vn,2n−1
)

dx

= µm+n − [µm µm+1 . . . µm+n−1]H−1
n vn,2n−1

= µm+n − µm+n = 0.

This proves that 〈Pm(x), Pn(x)〉 = 0 for any m < n. If m = n then∫
P ∗

n (x)W(x)Pn(x) dx =
∫

xnW(x)
(
xnI − [I xI . . . xn−1I ]H−1

n vn,2n−1
)

dx

= µ2n − v∗
n,2n−1H

−1
n vn,2n−1 = Sn. �

The inner product introduced in (6) is different from the one used in many papers on this
subject, e.g. [9, 11, 18, 20, 30] and others. The standard inner product used is called ‘left inner
product’

〈P,Q〉L =
∫

P(x)W(x)Q∗(x) dx,

which is different from the one defined in (6) by 〈P,Q〉R = ∫
P ∗(x)W(x)Q(x) dx, called

‘right inner product’.

4. Orthogonality via Gramm–Schmidt

A family of orthogonal polynomials (either scalar- or matrix-valued) can be obtained in at least
three ways: the method of moments introduced in section 2, the familiar recursion relation
and the Gramm–Schmidt orthogonalization procedure, which will be discussed in this section.

Let us obtain a family of monic matrix-valued orthogonal polynomials by performing the
Gramm–Schmidt procedure on the space of matrix-valued k × k polynomials. Define the row
vector

� = [I xI x2I . . .] (8)
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and a unit semi-infinite block upper triangular matrix

R =




I r01 r02 . . .

0 I r12 . . .

...
...

... · · ·


 , where ri,j ∈ Rk,k. (9)

To find an orthogonal basis for the space spanned by {xnI }∞n=0 with respect to the given
measure we perform the Gramm–Schmidt orthogonalization procedure on �, obtaining

� = PR, (10)

where the matrix R depends on the moments of the measure, and the vector P is defined in (4).
In the next proposition elements ri,j of the matrix R are computed.

Proposition 2. Let matrices �, P and R be defined as in (8), (4) and (9). Assume that
equation (10) holds and the polynomials in the vector P are defined in (3), then

Snrn,n+k = µ2n+k − v∗
n,2n−1H

−1
n v

(k)
n,2n−1, (11)

for all k � 0, where notation v
(k)
n,2n−1 is defined in section 2.

In particular, for n = 0

r0,m = µ−1
0 µm. (12)

In the matrix form,

H = R∗SR, (13)

where matrices S and H are defined in section 2.

Proof. From (10) it follows that

P0(x)r0,m + P1(x)r1,m + · · · + Pk(x)rk,m + · · · + Pm(x)I = xmI.

After multiplying the expression above by P ∗
n (x)W(x) from the left and integrating we obtain

Snrn,m =
∫

P ∗
n (x)W(x)xm dx

and (11) easily follows from writing out P ∗
n (x) as defined in (3) and integrating. To prove (13)

observe that (∫
�∗W(x)� dx

)
i,j

=
∫

xiW(x)xj dx = µi+j = Hi,j

and (∫
P ∗W(x)P dx

)
i,j

=
∫

P ∗
i (x)W(x)Pj (x) dx = δi,j Si,

hence

H =
∫

�∗W(x)� dx = R∗
(∫

P ∗W(x)P dx

)
R = R∗SR. �

The following lemma expresses H−1
n+1 in terms of H−1

n , vn,2n−1 and Sn and will be very useful
throughout the paper.

Lemma 1. Given the following partitioning of the matrices Hn+1 and H−1
n+1

Hn+1 =
(

Hn vn,2n−1

v∗
n,2n−1 µ2n

)
and H−1

n+1 =
(

A γ

γ ∗ α

)
,
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then

α = S−1
n , γ = −H−1

n vn,2n−1S
−1
n ,

and

A = H−1
n + H−1

n vn,2n−1S
−1
n v∗

n,2n−1H
−1
n = (

Hn − vn,2n−1µ
−1
2n v∗

n,2n−1

)−1
.

In particular,

H−1
n+1v

(m)
n+1,2n+1 =

(
H−1

n

(
v

(m+1)
n,2n−1 − vn,2n−1rn,n+m+1

)
rn,n+m+1

)
. (14)

Proof. The formulae above can be easily verified by direct computation. Expression (14) is
obtained using (11). �

Lemma 2. Let polynomials Pn(x) be defined in (3). Then

xn =
m∑

i=0

Pn−i (x)rn−i,n + [I xI · · · xn−m−1I ]H−1
n−mv

(m)

n−m,2(n−m)−1.

To illustrate,

Pn+1(x) = xn+1I − Pn(x)rn,n+1 − [I xI · · · xn−1I ]H−1
n vn,2n−1.

Proof. Follows from (14). �

5. Orthogonality via the recurrence relation

It is well known that matrix-valued orthogonal polynomials obey an appropriate three-term
recurrence relation, for example, see [30]. In the following lemma we present expressions for
the coefficients of the recursion relation in terms of the moments of the measure.

Proposition 3. The monic matrix-valued orthogonal polynomials defined in (3) obey the
following recurrence relation,

xPn(x) = Pn+1(x) + Pn(x)b∗
n + Pn−1(x)a∗

n, (15)

with

a∗
n = S−1

n−1Sn, b∗
n = un

n − un−1
n−1, (16)

where

un−1 =




un−1
0

un−1
1
...

un−1
n−1


 = H−1

n vn,2n−1; un
n = S−1

n

(
µ2n+1 − v∗

n,2n−1H
−1
n vn+1,2n

)
. (17)

Proof. Let the orthogonal polynomials obey the following three-term recursion relation,

xPn(x) = Pn+1c
∗
n + Pn(x)b∗

n + Pn−1(x)a∗
n (18)

for some matrices an, bn and cn. After multiplying (18) by P ∗
n+1(x)W(x) from the left and

integrating one arrives at∫
P ∗

n+1(x)W(x)xn+1 dx = Sn+1 =
∫

P ∗
n+1(x)W(x)xPn(x) dx = Sn+1c

∗
n,
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hence c∗
n = I . The above expression can also be written in the following way:

Sn+1 =
∫

xP ∗
n+1(x)W(x)Pn(x) dx

=
∫

(P ∗
n+2(x) + bn+1P

∗
n+1(x) + an+1P

∗
n (x))W(x)Pn(x) dx

= 0 + 0 +
∫

an+1P
∗
n (x)W(x)Pn(x) dx = an+1Sn,

implying a∗
n = S−1

n−1Sn. After multiplying (18) by P ∗
n (x)W(x) from the left and integrating

one obtains ∫
xP ∗

n (x)W(x)Pn(x) dx =
(∫

P ∗
n (x)W(x)Pn(x) dx

)
b∗

n = Snb
∗
n = bnSn.

In order to compute bn in terms of the moments compare powers of xI in the recursion relation
(15), which can be written out as

x(xnI − [I xI . . . xn−1I ]un−1) = (xn+1I − [I xI . . . xnI ]un)

+ (xnI − [I xI . . . xn−1I ]un−1)b∗
n

+ (xn−1I − [I xI . . . xn−2I ]un−2)a∗
n.

Equating the coefficients of front of xnI leads to b∗
n = un

n − un−1
n−1. From the definition

un = H−1
n+1vn+1,2n+1 and using lemma 1 one concludes that rn,n+1 ≡ un

n = S−1
n

(
µ2n+1 −

v∗
n,2n−1H

−1
n vn+1,2n

)
. �

Note 4. In the classical theory of scalar-valued orthogonal polynomials, the expression for
an is given by (for example, see [1])

an = det(Hn+1) det(Hn−1)

det(Hn)2
= Sn

Sn−1
,

which is equivalent to our formula (16), since in the scalar case Sn = det(Hn+1)

det(Hn)
. Also, as

observed in note 2, invertibility of the matrices Hn implies invertibility of the matrices Sn,
hence the matrices an are always well defined in this setting.

Note 5. Matrix polynomials of the second kind defined in (5) satisfy the same recursion
relation as these of the first kind defined in (3), since

Qn+1(x) + Qn(x)b∗
n + Qn−1(x)a∗

n = x

∫
µ(du)

Pn+1(u) + Pn(u)b∗
n + Pn−1(u)a∗

n

x − u

= x

∫
µ(du)

uPn(u)

x − u

= x

∫
µ(du)

(u − x)Pn(u)

x − u
+ x2

∫
µ(du)

Pn(u)

x − u

= xQn(x).

In the matrix form relations (15) for all n � 0 can be written as

LP ∗(x) = xP ∗(x), (19)

where L is given by the block tridiagonal matrix

L =




b0 I 0 0 . . .

a1 b1 I 0 . . .

0 a2 b2 I . . .

...
...

...
...

...


 . (20)
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The following proposition establishes the connection between the matrix L defined in (20) and
the matrix R defined in (9).

Proposition 4. Let Rk to be kth column of the matrix R defined in (9), where k � 0. Then

L∗Rk = Rk+1, or Rk = (L∗)kR0. (21)

In particular,

((L∗)k)0,0 = µ−1
0 µk. (22)

Proof. After multiplying � = PR by P ∗W(x) from the left and integrating, one obtains

SR =
∫

P ∗W(x)� dx, or (SR)i,j =
∫

P ∗
i (x)W(x)xj dx (23)

and

LSR =
∫

xP ∗W(x)� dx, or (LSR)i,j =
∫

P ∗
i (x)W(x)xj+1 dx. (24)

From (23) and (24) it follows

(LSR)i,j = (SL∗R)i,j = (SR)i,j+1,

and since S is diagonal, we conclude that (L∗R)i,j = ri,j+1, which implies (21). Expression
(22) follows from the facts that R0 is a column of all zeros except the identity at the block
{0, 0} and (Rk)0 ≡ r0,k = µ−1

0 µk . �

Note 6. In the classical theory of scalar-valued orthogonal polynomials the expression (22)
can be found in Akhiezer [1].

Along with monic matrix-valued orthogonal polynomials, one can try to introduce orthonormal
matrix-valued polynomials in the following fashion:

Definition 3. Given a family of monic polynomials presented in (3) define a family {P̄ n(x)}∞n=0
by means of

P̄ n(x) = Pn(x)S−1/2
n , for n � 0. (25)

It is easy to see that

〈P̄ n(x), P̄ m(x)〉 = S−1/2
n

(∫
P ∗

n (x)W(x)Pn(x) dx

)
S−1/2

n = S−1/2
n SnS

−1/2
n = I.

The recurrence relation for {P̄ n(x)}∞n=0 can be written as

xP̄ n(x) = P̄ n+1(x)ān+1 + P̄ n(x)b̄n + P̄ n−1(x)ā∗
n, where

ān = S1/2
n S

−1/2
n−1 , b̄n = b̄∗

n = S−1/2
n bnS

1/2
n ,

(26)

or, in the matrix form,

L̄P̄ ∗ = xP̄ ∗, where L̄ = S1/2LS−1/2.

Note that

L̄ = L̄∗, or LS = SL∗.

In order to be able to define an orthonormal family in this fashion, the matrices Sn have to be
positive definite for all n. In general, the matrices Sn being positive definite is equivalent to
the weight matrix W(x) being positive definite, and the reason for that is the following:
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• W(x) is positive definite for all x ∈ R ⇔ for any vector v ∈ Rk and n � 0 [v∗P ∗
n (x)]

W(x)[Pn(x)v] > 0 ⇔ for any vector v ∈ Rk and n � 0 [v∗Snv] > 0, which implies that
Sn are positive definite for all n � 0.

• The polynomials {Pn(x)}∞n=0 form a basis for the space of matrix polynomials, hence any
polynomial Q(x) can be written as Q(x) = ∑

i Pi(x)αi for some matrices αi . It is easy
to see that ∫

Q∗(x)W(x)Q(x) dx =
∑

i

α∗
i Siαi .

The above expression implies that Sn being positive definite for all n � 0 is equivalent to∫
Q∗(x)W(x)Q(x) dx being positive definite for all polynomials Q(x), which, in turn, is

equivalent to the weight matrix W(x) being positive definite.

Orthonormal polynomials will be used in the next section to derive the so-called kernel
polynomials and the Christoffel–Darboux formula.

6. The Christoffel–Darboux formula

In this section a matrix-valued kernel polynomial will be introduced and the Christoffel–
Darboux formula will be derived.
The following lemma introduces the matrix-valued kernel polynomial.

Lemma 3. Given a family of orthonormal polynomials as defined in (25), denote the kernel
polynomial of degree n to be

Kn(x, y) =
n∑

i=0

P̄ i(y)P̄ ∗
i (x). (27)

Then

Kn(x, y) = [I yI . . . ynI ]




µ0 µ1 . . . µn

µ1 µ2 . . . µn+1

...
...

...
...

µn µn+1 . . . µ2n




−1 


I

xI

...

xnI


 . (28)

Proof by induction. To ease the notation, denote

Y = [I yI . . . yn−1I ]∗ and X = [I xI . . . xn−1I ]∗.

For n = 0 we have K0(x, y) = P̄ 0(x)P̄ ∗
0(y) = µ−1

0 which agrees with formula (28). To
simplify the notation denote the right-hand side of expression (28) as RHS(n). For the
inductive step (n − 1) → n we use the notation and partitioning in lemma 1, as well as the
fact that X∗H−1

n vS
−1/2
n = xnS

−1/2
n − P̄ n(x) to rewrite RHS(n) as

RHS(n) = Y ∗AX + ynγ ∗X + Y ∗γnx
n + ynxnα

= Y ∗(H−1
n + H−1

n vn,2n−1S
−1
n v∗

n,2n−1H
−1
n

)
X

− ynS−1
n v∗

n,2n−1H
−1
n X − Y ∗H−1

n vn,2n−1S
−1
n xn + ynxnS−1

n

= Y ∗H−1
n X +

(
ynS−1/2

n − P̄ n(y)
)(

xnS−1/2
n − P̄ ∗

n(x)
)

− ynS−1/2
n

(
xnS−1/2

n − P̄ ∗
n(x)

) − xn
(
ynS−1/2

n − P̄ n(y)
)
S−1/2

n + ynxnS−1
n

= Y ∗H−1
n X + P̄ n(y)P̄ ∗

n(x) = RHS(n − 1) + P̄ n(y)P̄ ∗
n(x),

which completes the proof by induction. �
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Note 7. In the classical theory of scalar-valued orthogonal polynomials (see [4]), the kernel
polynomial is given by

Kn(x, y) = −det




µ0 µ1 . . . µn−1 I

µ1 µ2 . . . µn xI

...
...

...
...

...

µn µn+1 . . . µ2n xnI

I yI · · · ynI 0


 ,

which agrees with the scalar version of formula (28) derived above.

In the next lemma the matrix-valued version of the Christoffel–Darboux formula is presented.
The proof of the lemma is very similar to the one in the scalar case.

Lemma 4. Let a family of orthonormal polynomials {P̄ n(x)}∞n=0 be defined by (3) and (25).
Then

n∑
m=0

P̄ m(y)P̄ ∗
m(x) = P̄ n(y)ā∗

n+1P̄
∗
n+1(x) − P̄ n+1(y)ān+1P̄

∗
n(x)

x − y
. (29)

Note 8. In the classical theory of scalar-valued monic orthogonal polynomials (see [4]) the
Christoffel–Darboux identity has the following form:

n∑
m=0

pm(y)pm(x)

〈pm, pm〉 = pn(y)pn+1(x) − pn+1(y)pn(x)

〈pn, pn〉(x − y)
,

which agrees with the scalar version of formula (29) derived above.

7. A matrix-valued τ (t)-function

In this section we define a τ(t)-function for a system of matrix-valued orthogonal polynomials
on the real line and investigate some of its properties.

Let us introduce ‘times’ into the measure the following way:

µt(dx) = e
∑∞

i=1 ti x
i Iµ(dx), (30)

where I is the k × k identity matrix. The new moments are defined as

µn(t) =
∫

xn e
∑∞

i=1 ti x
i Iµ(dx).

Observe that
∂µn(t)

∂tm
=

∫
xn+m e

∑∞
i=1 ti x

i Iµ(dx) = µn+m(t). (31)

Definition 4. Define τ0(t) ≡ S0(t), and for n � 1

τn(t) ≡ Sn(t) = µ2n(t) − v∗
n,2n−1(t)H

−1
n (t)vn,2n−1(t), (32)

where Hn(t) and vn,2n−1(t) are defined in section 2, but now with ‘time’ dependence.

Note 9. In the classical theory of scalar-valued orthogonal polynomials, the τ(t)-function is
defined in the following fashion,

τ̃n(t) = det(Hn(t)),
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whereas our new definition in the scalar case becomes

τn(t) = det(Hn+1(t))

det(Hn(t))
.

In what follows prime ‘′’ denotes differentiation with respect to t1, in particular µ′
n(t) = µn+1(t)

and v′
n,2n−1 = vn+1,2n. To ease the notation in the discussion below, the ‘times’ t will be dropped

when not essential, and vn,2n−1(t) will be substituted with v, i.e.

v := vn,2n−1(t) and v′ := vn+1,2n(t).

In theorem 1 the connection between the τ(t)-function and the coefficients of the recursion
relation is established. The following lemma is needed in the proof of the theorem:

Lemma 5. 


µ1 µ2 . . . µn

µ2 µ3 . . . µn+1

...
...

...
...

µn µn+1 . . . µ2n−1


H−1

n v =




µn+1

...

µ2n−2

µ2n − Sn


 .

This could also be written as

(Hn)
′H−1

n v = v′ − (0 0 · · · Sn)
∗.

Proof 8. See the appendix. �

Theorem 1. Given a family of monic matrix-valued orthogonal polynomials as defined in
(3), which satisfies the recursion relation

xPn(x) = Pn+1(x) + Pn(x)b∗
n + Pn−1(x)a∗

n,

and a τ(t)-function defined in (32), then

b∗
n = ∂

∂t1
ln(τn(t))|t1=0 and a∗

n = τn−1(0)−1τn(0).

Proof. By definition, τn(t) = µ2n(t) − v∗(t)H−1
n (t)v(t). According to (31), after

differentiating with respect to t1 one obtains

τ ′
n(t) = µ2n+1 − (

v∗H−1
n v

)′ = µ2n+1 − v′∗H−1
n v − v∗(H−1

n

)′
v − v∗H−1

n v′.

Observe that

0 = I ′ = (
H−1

n Hn

)′ = (
H−1

n

)′
Hn + H−1

n H ′
n,

hence (
H−1

n

)′ = −H−1
n H ′

nH
−1
n .

Recall from (17) that µ2n+1 − v∗H−1
n v′ = Snu

n
n, implying that

τ ′
n(t) = Sn(t)u

n
n(t) − v′∗H−1

n v − v∗(H−1
n

)′
v

= Sn(t)u
n
n(t) − v′∗H−1

n v − v∗H−1
n H ′

nH
−1
n v

= Sn(t)u
n
n(t) − (

v′∗(t) − v∗H−1
n H ′

n

)
H−1

n v

= Sn(t)u
n
n(t) − [0 . . . 0 Sn]H−1

n v

= Sn(t)u
n
n(t) − Sn(t)u

n−1
n−1(t) = Sn(t)

(
un

n(t) − un−1
n−1(t)

)
.
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In the fourth equation lemma 5 was used. Observe that one could use

µ2n+1(t) − v′∗(t)H−1
n (t)v(t) = (

un
n(t)

)∗
Sn(t),

and obtain τ ′
n(t) = (

un
n(t) − un−1

n−1(t)
)∗

Sn(t). Thus,

τ ′
n(t) = τn(t)

(
un

n(t) − un−1
n−1(t)

) = (
un

n(t) − un−1
n−1(t)

)∗
τn(t),

which implies that
∂

∂t1
ln(τn(t))|t1=0 = τn(t)

−1 ∂

∂t1
τn(t)|t1=0 = (

un
n(0) − un−1

n−1(0)
) = b∗

n.

From (16) we can see that

an = τn(0)τ−1
n−1(0),

which concludes the proof of the theorem. �

Note 10. In the classical theory of scalar-valued orthogonal polynomials, the expression for
bn is

bn = ∂

∂t1
ln

(
det(Hn+1(t))

det(Hn(t))

)
.

With our definition of τn(t) = det(Hn+1(t))

det(Hn(t))
, the above expression is equivalent to that obtained

in the above theorem.

The next several lemmas are used in the proof of theorem 2, where the connection between
the monic matrix-valued orthogonal polynomials as defined in (3) and (5) and the τ -function
as defined in (32) is established. To ease the notation introduce X = [I xI . . . xn−1I ]∗;
denote v(i) and H(i)

n to be the ith derivatives with respect to t1. Note that the ‘shift’ notation
v

(i)
n,2n−1 introduced in section 2 can now be interpreted as the ith derivative of vn,2n−1 with

respect to t1.

Lemma 6. For any x ∈ R(
I − H ′

nH
−1
n

x

)−1 (
v − v′

x

)
= v + ξ

where

ξ = Xξ0, ξ0 = (ξ)0,0 and P ∗
n (x, t)ξ0 + Sn(t) = 0.

Proof. See the appendix. �

Lemma 7. Let Qn(x, t) be defined as in (5). Then

Qn(x, t) = x

∫
µ(du)

Pn(u, t)

x − u

=
∫

µ(du)
un − [1 u · · · un−1]H−1

n v

1 − u/x

=
∫

µ(du)un

∞∑
i=0

(u/x)i −
∫

µ(du)[1 u · · · un−1]
∞∑
i=0

(u/x)iH−1
n v

=
∞∑
i=0

µn+i

xi
−

( ∞∑
i=0

v
∗(i)
0,n−1

xi

)
H−1

n v

=
∞∑
i=0

µn+i − v
∗(i)
0,n−1H

−1
n v

xi
= 1

xn

∞∑
i=0

r∗
n,n+i

xi
Sn,
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where r∗
n,m is defined in (11). Denote

R(n, x) =
∞∑
i=0

r∗
n,n+i

xi
, (33)

hence

Qn(x, t) = 1

xn
R(n, x)Sn(t). (34)

Lemma 8. For any x ∈ R let us consider the equation( ∞∑
i=0

H(i)
n

xi

)−1 ( ∞∑
i=0

v(i)

xi

)
= H−1

n (v + w). (35)

Then

w = [0 0 · · · w∗
n−1]∗; wn−1 = R(n, x)Sn − U

x
, (36)

where

U =
∞∑
i=0

v∗(i)H−1
n w

xi
. (37)

Proof. See the appendix. �

Lemma 9. Suppose U and R(n, x) are as defined in (37) and (33), then

U = (xR(n − 1, x) − xI)wn−1.

Proof. See the appendix. �

Theorem 2. Let τn(t) be as defined in (32).

• Let {Pn(x, t)}∞n=0 be a family of monic matrix-valued orthogonal polynomials as defined
in (3) with the space variable x and ‘time’ dependence t. Then

Pn+1(x, t) = xPn(x, t)τ−1
n (t)τn(t − [x−1]), (38)

where

µn(t − [x−1]) =
∫

zn e
∑∞

i=1

(
ti− x−i

i

)
zi

W(z) dz

= µn(t) − µn+1(t)

x
.

• Let {Qn(x, t)}∞n=0 be a family of matrix-valued orthogonal polynomials as defined in (5)
with the space variable x and ‘time’ dependence t. Then

xQn+1(x, t) = Qn(x, t)τ−1
n (t)τn+1(t + [x−1]), (39)

where

µn(t + [x−1]) =
∫

zn e
∑∞

i=1

(
ti+ x−i

x

)
zi

W(z) dz

=
∞∑
i=0

µn+i (t)

xi
.



5744 L Miranian

Proof.

• Observe that

Hn(t − [x−1]) = Hn(t) − H ′
n

x
and v(t − [x−1]) = v − v′

x
.

Then

τn(t − [x−1]) = µ2n(t − [x−1]) − v∗(t − [x−1])H−1
n (t − [x−1])v(t − [x−1])

= µ2n − 1

x
µ2n+1 −

(
v − v′

x

)∗ (
Hn − H ′

n

x

)−1 (
v − v′

x

)

= µ2n − 1

x
µ2n+1 −

(
v − v′

x

)∗
H−1

n

(
I − H ′

nH
−1
n

x

)−1 (
v − v′

x

)

= µ2n − 1

x
µ2n+1 −

(
v − v′

x

)∗
H−1

n (v + ξ)

= µ2n − v∗H−1
n v − 1

x
µ2n+1 +

v′∗H−1
n v

x
− v∗H−1

n ξ +
v′∗H−1

n ξ

x

= Sn − un
n
∗Sn

x
+ v∗H−1

n X(P ∗
n )−1Sn − v′∗H−1

n X(P ∗
n )−1Sn

x

=
(

P ∗
n − un

n
∗P ∗

n

x
− v′∗H−1

n X

x
+ v∗H−1

n X

)
(P ∗

n )−1Sn

=
(
xn+1I − un

n
∗P ∗

n − v′∗H−1
n X

)
(P ∗

n )−1Sn

x

= P ∗
n+1(x, t)(P ∗

n (x, t))−1τn(t)

x
,

where lemma 6 was used in the fourth equation and lemma 2 was used in the ninth
equation.

• Observe that

Hn(t + [x−1]) =
∞∑
i=0

H(i)
n (t)

xi
and v(t + [x−1]) =

∞∑
i=0

v(i)(t)

xi
.

Then

τn(t + [x−1]) = µ2n(t + [x−1]) − v∗(t + [x−1])H−1
n (t + [x−1])v(t + [x−1])

=
∞∑
i=0

µn+i (t)

xi
−

∞∑
i=0

v∗(i)(t)

xi
H−1

n (v + w)

=
∞∑
i=0

µn+i (t) − v∗(i)H−1
n v

xi
−

∞∑
i=0

v∗(i)(t)

xi
H−1

n w

= R(n, x)Sn(t) − U,

where lemma 8 was used in the second equation. From lemma 8 we know that
R(n, x)Sn(t) − U = xwn−1, hence

τn(t + [x−1]) = xwn−1.

Using the result of lemma 9 write

R(n, x)Sn(t) − U = R(n, x)Sn − xR(n − 1, x)wn−1 + xwn−1 = xwn−1,
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which implies

R(n, x)Sn = xR(n − 1, x)wn−1 = xR(n − 1, x)Sn−1S
−1
n−1wn−1.

Using the result of lemma 7 the above expression becomes

Qn(x, t)xn = Qn−1(x, t)xn−1S−1
n−1τn(t + [x−1]),

implying

Qn(x, t)x = Qn−1(x, t)τ−1
n−1(t)τn(t + [x−1])

which concludes the proof of the theorem. �

Note 11. In the classical theory of scalar-valued orthogonal polynomials, expression (38)
has the following form,

pn(x, t) = xn τ̃n(t − [x−1])

τ̃n(t)
, (40)

where τ̃n(t) = det(Hn(t)), see [21, 28]. Observe that in the scalar case (38) is equivalent to
(40), since

Pn+1(x, t) = xPn(x, t)τ−1
n (t)τn(t − [x−1])

= x2Pn−1(x, t)τ−1
n−1(t)τn−1(t − [x−1])τ−1

n (t)τn(t − [x−1])

= ...

= xn+1(τn(t) · · · τ0(t))
−1(τn(t − [x−1]) · · · τ0(t − [x−1])).

Using the facts that

τn(t) = det(Hn+1(t))

det(Hn(t))
and τ0(t) = S0(t) = det(H1(t)) = µ0(t)

the above expression becomes

Pn+1(x, t) = xn+1

(
det(Hn+1(t))

det(Hn(t))
· · · det(H2(t))

det(H1(t))
det(H1(t))

)−1

×
(

det(Hn+1(t − [x−1]))

det(Hn(t − [x−1]))
· · · det(H2(t − [x−1]))

det(H1(t − [x−1]))
det(H1(t − [x−1]))

)

= xn+1 det(Hn+1(t − [x−1])

det(Hn+1(t))
= xn+1 τ̃n+1(t − [x−1])

τ̃n+1(t)
.

The scalar-valued analogue of expression (39) is

qn(x, t) = x−n τ̃n+1(t + [x−1])

τ̃n(t)
,

and its equivalence to (39) is proved similarly.

The next proposition is a collection of facts about the recursion relation coefficients.

Proposition 5. Let {Pn(x, t)}∞n=0 be a family of monic orthogonal matrix-valued polynomials
as defined in (3) with ‘time’ dependent moments. Let an and bn be the coefficients of the
recursion relation (15) with ‘time’ dependence, and let ∂/∂t1 be denoted by ‘′’. Then

(i) P ′
n+1(x, t) = −Pn(x, t)a∗

n+1;
(ii)

(
un

n

)′ = τ−1
n (t)τn+1(t) = S−1

n (t)Sn+1(t) = a∗
n+1;

(iii) (b∗
n)

′ = a∗
n+1 − a∗

n;
(iv) (a∗

n)
′ = a∗

nb
∗
n − b∗

n−1a
∗
n .
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Proof.

(i) Denote X = [I xI . . . xn−1I ]∗, then

P ′
n+1(x, t) = −[X∗xnI ]

(
H−1

n+1vn+1,2n+1
)′

= −[X∗xnI ]
((

H−1
n+1

)′
vn+1,2n+1 + H−1

n+1(vn+1,2n+1)
′)

= −[X∗xnI ]
(−H−1

n+1H
′
n+1H

−1
n+1vn+1,2n+1 + H−1

n+1v
′
n+1,2n+1

)

= −[X∗xnI ]


−H−1

n+1v
′
n+1,2n+1 + H−1

n+1




0
0
...

Sn


 + H−1

n+1v
′
n+1,2n+1




= −[X∗xnI ]H−1
n+1(0 0 · · · Sn)

∗.

Using partition and notation from lemma 1 we conclude that

−[X∗xnI ]H−1
n+1(0 0 · · · Sn)

∗ = −[X∗xnI ]

(−H−1
n vn,2n−1S

−1
n Sn+1

S−1
n Sn+1

)
= −(

xn − X∗H−1
n vn,2n−1

)
a∗

n+1 = −Pna
∗
n+1.

(ii) Denote en = [0 0 · · · I ]. By the reasoning similar to that above one arrives at(
un

n

)′ = en

(
H−1

n+1vn+1,2n+1
)′ = enH

−1
n+1(0 0 · · · Sn)

∗ = S−1
n Sn+1.

(iii) Follows from the previous part and the fact that b∗
n = un

n − un−1
n−1.

(iv) a∗
n+1 = S−1

n Sn+1, hence Sna
∗
n+1 = Sn+1. After differentiating both sides we obtain

S ′
na

∗
n+1 + Sn(a

∗
n+1)

′ = S ′
n+1. Since S ′

n = Snb
∗
n, we obtain

(a∗
n+1)

′ = a∗
nb

∗
n − b∗

n−1a
∗
n.

�

Note 12. It is only natural to call (iii) and (iv) in the above proposition the non- Abelian
Toda equations, see [15].
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Appendix

Proof of lemma 5. Using identity (7) one arrives at


µ1 µ2 . . . µn

µ2 µ3 . . . µn+1

...
...

...
...

µn µn+1 . . . µ2n−1


 H−1

n vn,2n−1 =




v∗
1,nH

−1
n vn,2n−1

v∗
2,n+1H

−1
n vn,2n−1

...

v∗
n,2n−1H

−1
n vn,2n−1




=




µn+1

µn+2

...

µ2n − Sn


 = v′

n,2n−1 −




0
0
...

Sn


 . �
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Proof of lemma 6. Suppose(
I − H ′

nH
−1
n

x

)−1 (
v − v′

x

)
= v + ξ

for some ξ , then using lemma 5 one obtains

v − v′

x
=

(
I − H ′

nH
−1
n

x

)
(v + ξ) = v + ξ − H ′

nH
−1
n v

x
− H ′

nH
−1
n ξ

x

= v + ξ − v′

x
+

1

x
(0 0 · · · Sn)

∗ − H ′
nH

−1
n ξ

x
,

which implies

H ′
nH

−1
n ξ = xξ + (0 0 · · · Sn)

∗. (A.1)

Note that

H ′
nH

−1
n =




e1

e2
...

v∗H−1
n


 , (A.2)

where ei = [0 · · · I · · · 0] and I is at the ith location. After applying (A.2) to (A.1) we obtain
the following equation,


ξ1

ξ2
...

v∗H−1
n ξ


 =




ξ0x

ξ1x

...

wn−1x + Sn


 , (A.3)

where ξi denotes the ith element of ξ . Expression (A.3) implies that ξi = xiξ0 for
i = 0, . . . , n − 1, and

v∗H−1
n Xξ0 = xnξ0 + Sn,

leading to

0 = (
xn − v∗H−1

n X
)
ξ0 + Sn = P ∗

n (x, t)ξ0 + Sn,

which concludes the proof of the lemma. �

Proof of lemma 7. Rewriting expression (11) and keeping in mind that for any vector ψ

v∗
i,n−1+iH

−1
n ψ = ψi,

for all i < n, and vn+m,2n−1+m = v(m) for all m � 0 one obtains

v∗(i)H−1
n v = v∗

n+i,2n+i−1H
−1
n v = µn+i − r∗

n,n+iSn. (A.4)

Rearranging (35) one arrives at

∞∑
i=0

v(i)

xi
=

( ∞∑
i=0

H(i)
n

xi

)
H−1

n (v + w) =
∞∑
i=0

H(i)
n H−1

n (v + w)

xi
,
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or, element-wise


∑∞
i=0

µn+i

xi
=

∑∞
i=0

µn+i

xi
− R(n, x)Sn

xn
+

∑n−1

i=0

wi

xi
+

U

xn∑∞
i=0

µn+1+i

xi
=

∑∞
i=0

µn+1+i

xi
− R(n, x)Sn

xn−1
+

∑n−2

i=0

wi+1

xi
+

U

xn−1

...∑∞
i=0

µ2n−1+i

xi
=

∑∞
i=0

µ2n−1+i

xi
− R(n, x)Sn

x
+ wn−1 +

U

x
.

The last equation implies wn−1 = R(n,x)Sn−U

x
. Substituting this into the previous one we obtain

that wn−2 = 0. By continuing this process we arrive at wi = 0 for all 0 � i � n − 2, which
concludes the proof of the lemma. �

Proof of lemma 8. Using the result of lemma 7 and the notation from lemma 1 we conclude
that

H−1
n w =

(−H−1
n−1vn−1,2n−3

I

)
S−1

n−1wn−1.

To ease the notation, denote p = vn−1,2n−3, then( ∞∑
i=0

v(i)

xi

)
H−1

n w =
[ ∞∑

i=0

p∗(i+1)

xi

∞∑
i=0

µ2n−1+i

xi

] (−H−1
n−1p

I

)
S−1

n−1wn−1

=
( ∞∑

i=0

µ2n−1+i − p∗(i+1)H−1
n−1p

xi

)
S−1

n−1wn−1

= (xR(n − 1, x) − xI)wn−1,

which concludes the proof of the lemma. �
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